プロジェクトその

財団法人室蘭テクノセンター

事業メニュー			テーマ /	メンバー	
•			内 容	(事業管理者) 財団法人室蘭テクノセンター	
経	戦略的基盤技術高度化 支援事業	を実現するだ	/チューナー付PC用 とめのプラスチック成 責額:120,864千円(18.		
済産業省		ーデナの開発が急務 全てをプラスチックと キープした製品開発 を実現する「ガスア	となっている。これにタ ともに一体成形し、さタ 巻が必要とされている。 シスト成形」と「特殊イン!	が可能な小型・軽量・薄型アン 対応するためには、アンテナ部品 らにアンテナ機能及び外観性を 本研究開発は、小型・薄肉化 サート成形技術」の複合成形技 の実用化を目指すものであ	(再委託先・実施機関) (梯三好製作所、(梯サカイ技研、北海道立工業試験場、国立大学法人 山形大学
従	来技術			新技術	
射出	プラスチック部品の射出成 出成形機械、金型により成 は後工程を考慮し、現行製I mm	形し、肉	AE解析による金型 ジェンーション	どがインサートできる空洞 炭酸ガス成形による部品	信用金属部品、ヒンジ機構部品な 部の形成技術開発
プラ部品	國別部品によるアンテナの ラスチック成形品に電波受・ 品・電子基板を入れ、ビス・ ☆立、現行製品厚さ7.0mm	組み立て言用金属	アンテナ形状、ヒンジジ状の技術開発	ー体成形(1工程での製電波受信金属部品、ヒンジラスチック部品の一体成形の	機構部品、電子基板の3部品とプ
ers ers	来製品の課題 製品の面積が大きい 製品の肉厚が厚い 後工程(基板組込)に工数が	かかる	課題解決		現行1/3以下 現行肉厚2.5mm 0.8mm 現行厚さ7.0mm 4.5mm
	目 開発 目 を 高めた	票:従来のアンテナ表面積品:小型化に必要なア 製品を製作する。	な送開始に伴い、これ で で で で で で で で れ に は で れ に で れ に で れ に で れ に で た で た て プ た う た う た う た う た う た う た う た う た う た	に対応した小型・軽量・薄型の の厚さの64%以下 ラスチックで一体成形し、機能 スト成型と炭酸ガス成型の複合	、外観、デザイン性